
SAN FRANCISCO JULY 22-26 Volume 19, Number 3, 1985 

An I m a g e  S y n t h e s i z e r  

Ken Perlin 

Courant Institute of Mathematical Sciences 
New York University 

Abstract 
We introduce the concept of a Pixel Stream Editor. This forms 
the basis for an interactive synthesizer for designing highly 
realistic Computer Generated Imagery. The designer works in an 
interactive Very High Level programming environment which 
provides a very fast concept/implement/view iteration cycle. 

Naturalistic visual complexity is built up by composition of non- 
linear functions, as opposed to the more conventional texture 
mapping or growth model algorithms. Powerful primitives are 
included for creating controlled stochastic effects. We introduce 
the concept of "solid texture" to the field of CGI. 

We have used this system to create very convincing 
representations of clouds, fire, water, stars, marble, wood, rock, 
soap films and crystal. The algorithms created with this paradigm 
are generally extremely fast, highly realistic, and asynchronously 
parailelizable at the pixel level. 
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Intreduetion 

This work arose out of some experiments into developing efficient 
namraiistlc looking textures. Several years ago we developed a 
simple way of creating well behaved stochastic functions. We 
found that combinations of such functions yielded a remarkably 
rich set of visual textures. We soon found it oambersome to 
continually rewrite, re.compile, and rerun programs in order to try 
out different function combinations. 

This motivated the development of a Pixel Stream Editing 
language (PSE). Cook [1] has proposed an expression parser for 
this purpose. We have taken the same idea somewhat farther by 
providing an entire high level programming language available at 
the pixel level. Unlike [1], The PSE contains, general flow of 
control structures, allowing arbitrarily asynchronous operations at 
different pixels. 

With the PSE we may interactively compose functions defined 
over modelling space. By starting with the right choice of 
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primitive functions we can build up some rather convincing 
naturalistic detail with surprisingly simple and efficient 
algorithms. 

We will first describe the PSE language and environment. Then 
we will introduce the concept of solid texture, together with our 
well behaved stochastic functions. Finally we will give some 
examples of how these concepts work together in actual practice. 

A Plxel Stream Editing Language 

Consider any list of variable names. We will call any list of 
corresponding values for these variables a "pixer ' .  For example, 
one possible pixel for the variable list [red green blue] is [0.5 0.3 
0.7]. We will call any list of names together with a two 
dimensional array of pixels an "image".  

A Pixel Stream Editor (PSE) is simply a filter which converts 
input images to output images by running the same program at 
every pixel. We always read and write image pixels in some 
canonical order. At any one pixel, all that the program "knows" 
about each image are its variable names and their current values. 

The PSE we have designed has a rather high level language. All 
of the familiar programming constructs are supported, including 
conditional and looping control structures, function procedure 
definitions, and a full compliment of arithmetic and logical 
operators and mathematical functions. Assignment and the 
equality operator are denoted by " = "  and "ffi •" ,  respectively, as 
in the C programming language [2]. For any infix operator op, 
a op = b denotes a = a op b. 

Variables may be scalars, or else vectors of scalars and/or vectors 
(recursively). Typing is implicit, determined by assignment. 
Program blocks are indicated by indenting. All operators will 
work on scalars or vectors. For example a + b  is a scalar sum if a 
and b are scalars, and a vector sum if a and b are vectors. 

The following simple example will illustrate. Suppose the input 
image contains the variable list [surface point normal], where 
surface is a surface identifier, point is the location in space of the 
surface visible at this pixel, and normal is the surface normal 
direction at point. This image in particular would generally be the 
output of some visible surface finding algorithm. 

Let the output image consist of [color]. If we interpret color as a 
[red green blue] vector, then the procedure : 

if surface = = 1 
color = [1 00]  * max(O.l, dot(normal, [1 0 01)) 

else 
color = [0 0 0.1] 

will produce an image of a diffusely shaded red object lit from the 
positive x direction against a dark blue background. The function 
"'dot()" is simply a built in function returning the dot product of 
two v~tors.  
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Spotted Donut Bumpy Donut 

Stucco Donut Disgusting Donut 

Bozo's Dollut Wrinkled Donut 
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Note that in the above example, "[1 0 0]" is used in one place to 
denote the color red, and in another to denote a direction in 
space. Such looseness and ambiguity was a deliberate design 
decision in creating the language. In using the system we 
obtained some of the most striking visual effects only by stepping 
over (real or imagined) semantic distinctions. 

We find that the PSE is most useful as a design tool when used as 
interactively as possible. For this reason we have placed it in an 
interactive design cycle : 

1 .Edi t  PSE program 
2. Run it on a low resolution image 
3. View the results on a color monitor 

Design resolution is generally chosen to allow a design cycle time 
of under one minute. 

Space Functions and Solid Texture 

A number of researchers have proposed procedural texture, 
notably [3], [5], and [6]. As far as we know all prior work in this 
direction has been with functions which vary over a two 
dimensional domain. 

Suppose we extend this to functions which vary over a three 
dimensional domain. We call any function whose domain is the 
entirety of (x,y,z) space a "space function". 

Any space function may be thought of as representing a solid 
material. If we evaluate this function at the visible slxtface points 
of an object then we will obtain the surface texture that would 
have occured had we "sculpted" the ob~.~'t out of the material. 
We will call a texture so formed a '*solid texture". 

This approach has several advantages over texture mapping : 

1. Shape and texture become independent. The texture does 
not need to be "f i t"  onto the surface. If  we change the 
shape or carve a piece out of it, the appearance of the solid 
material will accurately change. 

2. As with all procedural textures, the database is extremely 
small. 

Although it is not immediately obvious, this paradigm is a 
superset of conventional texture mapping techniques. Any stored 
texture algorithm may be cast as a table lookup function 
composed with a projection function from three dimensions to 
two. 

We will use solid texture repeatedly over the coune  of this paper 
to simalate a variety of materials. 

NoluO 

Irt order to get the most out of the PSE and the solid texture 
approach we have provided some primitive stochastic functions 
with which to bootstrap visual complexity. We now introduce the 
most fundamental of these. 

Noise() is a scalar valued function which takes a three dimensional 
vector as its argument. It has the following properties : 

Statistical invariance under rotation 
(no matter how we rotate its domain, 
it has the same statistical character) 

A narrow bandpass limit in frequency 
(its has no visible features larger or smaller 
than within a certain narrow size range) 

Statistical invariance under translation 
(no matter how we translate its domain, 
it has the same statistical character) 

Noise() is a good texture modeling primitive since we may use it 
in a straightforward manner to create surfaces with desired 
stochastic characteristics at different visual scales, without losing 
control over the effects of rotation, scaling, and translation. This 
works well with the human vision system, which tends to analyze 
incoming images in terms of levels of differently sized detail [4]. 

The author has developed a number of surprisingly different 
implementations of the Noise() function. Some real tradeoffs are 
involved between time, storage space, algorithmic complexity, 
and adherence to the three defining statistical constraints. 

Because of space limitations, we will describe only the simplest 
such technique. Although generally adequate, this procedure only 
approximately conforms to the bandwidth and rotational 
invariance constraints. 

1. Consider the set of all points in space whose x, y, and z 
coordinates are all integer valued. We call this set the 
integer lattice. 

Associate with each point in the integer lattice a pseudo- 
random value and x, y, and z gradient values. More 
precisely, map each ordered sequence of three integers into 
an uncorrelated ordered sequence of four real numbers: 
[a,b,c,d] = H([x,y,z]), where [a,b,e,d] define a linear 
equation with gradient [a,b,c] and value d at [x,y,z]. H 0  is 
best implemented as a hash function. 

2. If [x,y,z] is on the integer lattice, we define Noise([x,y,z]) ~- 
d[~o,a]" 

If [z,y,~] is not on the integer lattice we compute a smooth 
(eg. cubic polynomial) interpolation between lattice equation 
coefficients, applied first in x (along lattice edges), then in y 
(within lattice z-faces), then in z. We then evaluate this 
interpolated linear equation at [x,y,z]. 

We will now show some of the simpler uses of Noise(). We will 
assume that "'point" and "normal" are vector valued input image 
variables. 

By evaluating Noise() at visible surface points of simulated objects 
we may create a simple " random" surface texture (figure 
Spotted.Donut) : 

color -~ white * Noise(point) 

The above texture has a band-limited character to it; there is no 
detail outside of a certain range of size. This is equivalent to 
saying that the texture's frequency spectrum falls off away from 
some central peak frequency. 

Through functional composition we may do many different things 
with the value returned by the Noise() function. For example, we 
might wish to map different ranges of values into different colors 
(figure Bozo's.Donut) : 

color -- Colorful(Noise(k * point)) 

In the above example we have scaled the texture by multiplying 
the domain of Noise() by a constant k. An nice feature of the 
functional composition approach is the ease with which such 
modifications may be  made. 

Another convenient primitive is the vector valued differential of 
the Noise() signal, defined by the instantaneous rate of change of 
Noise() along the x, y, and z directions, respectively. We will call 
this function DnoiseO. 
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Water Crysl~! 

Art Glass 
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DnoiseO provides a simple way of specifying normal perturbation 
[7] (figure Bumpy.Donut) : 

normal + = Dnoise(point) 

By using functions of Noise() to control the amount of DnolseO 
sPerturbation, we may simulate various types of surface (figure 

tucco.Donut), and use these in turn to design other types of 
surface (figure Disgusting.Donut). 

AS another example, a 1/f signal over space can be simulated by 
looping over octaves (powers of 2 in frequency) : 

N~se(ooint * 2:) 
21 

In order to create 1/f texture we observe that the differential of a 
function with a 1/f frequency spectrum is a vector valued function 
with a fiat frequency specu'um (ie. gradients of 1/f functions are 
similar at all scales). This means that we must create similar 
normal perturbation in all octaves (figure Wrinkled.Donut) : 

f = l  
while f < pixel_freq 

normal + = Dnoise(f * point) 
f * = 2  

Note that the calculation stops at the pixel level. In this way 
unwanted higher frequencies are automatically clamped. 

Unlike subdivision based [5]  or Fourier space [14]  fractal 
simulations, the above algorithm proceeds independently at all 
sample points. There is no need to create and modify special data 
structures in order to provide spacial coherence, This results m a 
considerable time savings. As with 'all of the algorithms we will 
present, the calculation at different pixels can b e  done in any 
order, in parallel, or even on different machines. 

Marble - An Example of • Solid Texture 

We can use Noise() to create function turbulence() which gives a 
reasonable visual appearars~ of turbulent flow (see Appendix). 
We may then use turbulence() to simulate the appearance of 
marble. 

We observe that marble consists of heterogeneous layers. The 
"marble"  look derives from turbulent forces which create 
deformations before these layers solidify. 

The unperturbed layers alone can be modeled by a simple cole:- 
filtered sine wave : 

function boring_marble(point) 
x = point[l] 
return marble_color(sin(x)) 

where point[l] denotes the first (ie. x) component of the point 
vector and raarble..color 0 has been defined as a spline function 
mapping scalars to color vectors. To go from this to realistic 
marble we need only perturb the layers : 

function marble(point) 
x = poim[1] + turbulence(point) 
return marble_color(sin(x)) 

By invoking this procedure at visible surface ]points we can create 
quite realistic simulations of marble ob~cts (figure Marble,Vase). 

Fire 

We can create fire using turbulence() whenever we have a well 
defined ~low. 
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For example, suppose we wish to simulate a solar corona. We 
will assume that the following entities : 

norm() 
direction 0 
frame 

scalar length (ie. norm) of a vector 
the (unit length) direction of a vector 
global lime variable (ie. one frame dick) 

have already been defined. 

A corona is hottest near the emitting sphere and cools down with 
radial distance from the sphere center. At any value of radius, 
and hence of temperature, a particular spectral emission is visible. 
Assume we have defined a function color..of_emission 0 which 
models emission color as a function of radius. 

Modeled as a smooth flow, the corona would be implemented by : 

smooth_corona(point - center) 

function smooth_corona(v) 
radius = norm(v) 
return color.of_emission(radius) 

By addin~g turbulence to the radial flow we can turn this into a 
realistic stmulation of a corona (figure Corona) : 

function corona(v) 
radius ffi norm(v) 
dr = turbulence(v) 
return color..of_corona(radius + dr) 

To animate this we linearly couple the domain of turbulence to 
time : 

function moving_corona(v) 
radius = norm(v) 
dr = turbulence(v - frame * direction(v)) 
return color_of_corona(radius + dr) 

Water  

Suppose we wish to create the appearance of waves on a surface. 
To simplify things we will use normal perturbation [7] instead of 
actually modifying the surface position. 

Max [8] approached this problem by using a collection of 
superimposed linear wave fronts. Linear fronts have a notable 
deficiency - they form a self.replicating pattern when viewed over 
any reasonably large area. 

To avoid this we use spherical wave fronts eminating from point 
source centers [17]. More precisely, suppose at a given pixel a 
particular surface point is visible. For any wave source center, we 
will perturb the surface normal towards the center by a cydoidal 
function of the center's distance from the surface point : 

normal + = wave(point - center) 

function wave(v) 
return direction(v) * cycloid(norm(v)) 

We can create multiple centers, let's say distributed randomly 
around the unit sphere, by using the direction of DnoiseO over 
any co]leetion of widely spaced points. This works because (by 
definition) the value of Dnoise 0 is tmcorrelated for any two 
points which are spaced widely enough apart : 

function makewaves(n) 
for i in [1 .. n] 

center[i] -- direction(Dnoise(i * [100 0 0] )) 
return center 
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To make a wave model with 20 sources we would enter : 

if begin_frame 
center ~- makewaves(20) 

for c in center 
normal + = wave(point- c) 

Note that the surface need not be planar. By making our wave 
signal defined over 3-space we have ensured shape independence. 
This means that we can run the above procedure on any shape. 
The illustration "Water Crystal" was made using 20 sources 
(figure Water.Crystal). A similar procedure was used to simulate 
an "Art  Glass" partition (figure Art.Glass). 

Waves of greater realism are created by distributing the wave- 
front spacing frequencies using a 1/f relatiouship of amplitude to 
frequency. If we assign a random frequency f to each center, the 
last line of tiw procedure then becomes : 

normal + = wave((point - c) * f) / f 

Using this refinement (again with 20 sources) we can realistically 
simulate ocean surfaces (figure Ocean.Sunset). 

Since each wave front moves outward linearly with time we may 
animate these images by adding a linear function of time to the 
argument passed to cycloidO : 

function moving.wave(v, Dphase) 
return direction(v) " cycloid(norm(v) - frame * Dphase) 

where Dphase is the rate of phase change. For greatest realism 
we make Dphase proportional to fJ/2 [9]. The wave images 
pictured are actually stills from such animations. 

Other Examples - Clouda and Bubbles 

The two bubble images were designed by Carl Ludwig using the 
PSE. The various elements were all created and assembled by 
functional composition in the PSE. 

For example, in the topmost bubble image the background clouds 
were created by composing a color spline function with 
turbulence(). The reflection and refraction from the bubble 
surface were done by using simple vector valued functions to 
modify an incoming direction vector in accordance with the 
appropriate physical laws. These were composed with the cloud 
function and added together. 

In the center image, a function corresponding to the shape of an 
illuminated window was composed with reflection and refraction 
functions. 

The appearance of variable bubble thickness was simulated by 
multiplying turbulence() by each of a red, 8teen, and blue 
frequency and using sin() of this to create constructive and 
destructive interference fringes. In the PSE this looks like : 

color *= 1 + sin([rfreq gfreq bfreq] * turbulenca(point)) 

Cempasl t ta |  

We can use the PSE simply as a digital image compositor, in 
which case it functions as a generalization of [10]. We can also 
use it to combine and modify images in more unusual ways. 

Suppose for example that we wish to synthesize some flame on 
the PSE, knowing that later we will race;re some other animation 
to be composited with our synthetic flame. 

We may defer the aesthetic decision of how to color the flame 
until after looking at this footage. We do this by computing the 
flame in two passes. The first pass outputs only a scalar flame 

value. The second and simpler pass maps this scalar quantity to 
the appropriate color vector. 

Note that this process involves no recalculation of the flame itelf. 
The second pass through the PSE is being used only as a general 
color splining filter, at a small fraction of the total computing 
COSt. 

In an actual commercial production .this ability to split 
computation costs and defer post-production oeasions adds 
enormously to throughput. 

In more unusual cases we may use the scalar flame to modulate 
the frequency distribution or height of water waves, or the 
amount of rocklike character to give to a surface. In this context 
our approach is similar to that of [1]  and [10], the difference 
being the extra flexibility we gain by the ability to specify 
arbitrary asynchronous pixel operations. 

Ceudderatlemt of  Egttekacy 

The efficiency of an implementation is a rather elusive thing. 
This is because it consists of three fairly different considerations. 
Most familiar is time efficiency. There is also space efficiency, 
which often is inversely proportional to time efficiency (as m 
"should we use a procedure or a lookup table?"). 

The third consideration, often overlooked, is flexibility. Many of 
us are familiar with archaic and monolithic "dinosaur" programs 
that nobody dare modify lest they fall apart altogether. Such 
programs must be used "as is" or else scrapped and rewritten 
from scratch. 

The approach we offer here does not always produce the most 
efficient algorithms. What it does offer is the opportunity to try 
out new approaches qLuickly and painlessly. For COl in particular 
this is of the utmost tmportance. We generally want to see what 
the picture looks like before proceeding with optimization. Once 
implemented, PSE algorithms lend themselves readily to 
optimization by virtue of their simplicity and high degree of 
modularity. 

In addition, a number of effects are ideally suited to a functional 
composition paradigm; generally when there is interplay between 
a simple regular structure and a complex stochastic structure. 
This is because we can use nonlinear functional composition to 
model the stochastic part of the structure. This will result in both 
good time efficiency and good space efficiency. 

The flame model constimtas such a "best case" for our approach. 
The final motion picture quality animation ran in about 10 
minutes a frame, written entirely in an unoptimized interpreted 
pseudo-code implementation of the design language on a Gould 
SEL 3287 Minicomputer. This appears to be much faster than the 
particle system approach of Reeves [11]. With optimization and 
true compilation a speedup of a factor of 5 is indicated. The 
marble vase, with twice as large an area of visible turbulence, 
took about 20 minutes to compute. 

In all cases, the low resolution interactive design loop took 
between 15 seconds and 1 minute per iteration. 

Now Wlutt? 

We plan to make a number of improvements m the system. We 
are developing an optmized compiler for the design language 
which recognizes quantities that vary slowly over the linage 
stream and computes quantities dependent these only as 
necessary. We are also addin~g a general facility for direct 
insertion of large data bases rote the image prtor "to pixel 
streaming. 

We are currently using the same paradigm of composition with 
stochastic functions for motion and shape modelling. 

We have applied our approach to modelling stochastic motion not 
only for continuous turbulence models, but also for such things as 
falling leaves, swaying trees, flocks of birds, and muscular 
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tippling. In general  the paradigm is appropriate whenever a 
reipflar, well defined macroscopic motion contains some stochastic 
component. 

To create interesting stochastic shapes, we have generalized on 
the work of Bliun [151. Given any space filling scalar valued 
function, we may consader the shape formed by any isosurface 
(surface of constant value) of the function. It turns out that a very 
rich class of shapes may be created in this manner (for example, 
we can actually build the three dimensional structure of the flame 
shown in figure Corona). We understand that Lance Williams of 
NYIT [16] is pursuing a similar line of research. 

Conclusions 

We have shown a new approach to the design of realistic CGI 
algorithms. We have introduced the concepts of the Pixel SUream 
Editor and of solid texture. We have demonstrated a number of 
effects which would have been considerably more difficult and 
expensive, and in some cases impossible, to generate by 
previously known techniques. 

Appendix.  Turbulence 

A suitable procedure for the simulation of turbulence using the 
Noise() signal is : 

function turbulence(p) 
t = 0  
scale = 1 
while (scale > pixelsize) 

t + = abs(Noise(p / scale) * scale) 
scale/= 2 

return t 

This is actually a simplified approximation to the magnitude of 
the deformauon which results from swirling around the 
isosurfaces of the Noise() domain along the instantaneous vector 
field : 

• -'~°l'*~°t"')2 (normal X Dnoise(point)) 

This formulation is part of a synthetic turbulence model 
developed by the author [12]. We use the simplified turbulence() 
procedure because it is fast and the pictures it produces look good 
enough. 

Even so it is interesting to examine, with only minimal comment, 
the algorithmic structure of turbulence(). Note the expression 

Noise(p / scale) * scale 

inside the loop. This says that at each scale the amount of Noise() 
added is proportional to its size. Thus we obtain a self-similar, or 
1/f, pattern of perturbation. This will give a visual impression of 
brownian motion. Also, while the deformation is continuous 
everywhere, the absO at each iteration assures that its gradient 
will have discontinuous boundaries at all scales. This will give a 
visual impression of discontinuous flow, which will be interpreted 
by the viewer as turbulent. 
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