Reductio ad Absurdum

Ryan Marcus rcmarcus@brandeis.edu

October 1, 2015

Proof. $\alpha \models \beta$ if and only if $(\alpha \land \neg \beta)$ is unsatisfiable.

First, we will show that $\alpha \models \beta$ implies that $(\alpha \land \neg \beta)$ is unsatisfiable. Let M be the set of models satisfying α . Since $\alpha \models \beta$, we know that any $m \in M$ satisfies β . Assume for a contradiction that there exists some $\mu \in M$ that satisfies $(\alpha \land \neg \beta)$. Since μ satisfies $(\alpha \land \neg \beta)$, μ must be a model of α and $\neg \beta$. But μ cannot be a model of $\neg \beta$ because μ is a model of β .

Next, consider M' to be the set of all models that do not satisfy α . We know that any such $\mu' \in M'$ cannot satisfy $(\alpha \land \neg \beta)$ because a model must satisfy both sides of a conjunction in order to satisfy a conjunction. Therefore, $\alpha \models \beta$ implies that $(\alpha \land \neg \beta)$ is unsatisfiable.

Second, we show that if $(\alpha \land \neg \beta)$ is unsatisfiable, then $\alpha \models \beta$. Since $(\alpha \land \neg \beta)$ is unsatisfiable, then any model must:

- 1. Satisfy α but not satisfy $\neg \beta$, or
- 2. Satisfy $\neg \beta$ but not satisfy α , or
- 3. Satisfy neither $\neg \beta$ nor α

This is trivially proven via contradiction: assume there was a model m that satisfied both α and $\neg\beta$. Then m satisfies $(\alpha \land \neg\beta)$, which contradicts that $(\alpha \land \neg\beta)$ is unsatisfiable.

From here, it is easy to show that all models that satisfying α must entail β . Since all models that satisfy α must not satisfy $\neg\beta$, we know that any model that satisfies α must satisfy β by the excluded middle. Therefore, if $(\alpha \land \neg\beta)$ is unsatisfiable, then $\alpha \models \beta$.